MR2309412 (2007m:34049) 34B15

Minhós, F. (P-EVOR-CIM); Santos, A. I. (P-EVOR-CIM); Gyulov, T. (BG-RUS-CAM)

A fourth-order BVP of Sturm-Liouville type with asymmetric unbounded nonlinearities.
(English summary)

Summary: “We obtain an existence and location result for the fourth-order boundary value problem of Sturm-Liouville type

\[u^{(iv)}(t) = f(t, u(t), u'(t), u''(t), u'''(t)), \quad \text{for } t \in [0, 1] \]
\[u(0) = u(1) = A, \]
\[k_1u'''(0) - k_2u''(0) = 0, \]
\[k_3u'''(1) + k_4u''(1) = 0, \]

where \(A \in \mathbb{R} \), \(f: [0, 1] \times \mathbb{R}^4 \rightarrow \mathbb{R} \) is a continuous function and \(k_i \in \mathbb{R} \) (\(i = 1, 2, 3, 4 \)) are such that \(k_1, k_3 > 0 \) and \(k_2, k_4 \geq 0 \). We assume that \(f \) satisfies a one-sided Nagumo-type growth condition which allows an asymmetric unbounded behavior on the nonlinearity. The arguments make use of an a priori estimate on the third derivative of a class of solutions, the lower and upper solutions method and degree theory.”

{For the entire collection see MR2307322 (2007k:34004)}

© Copyright American Mathematical Society 2007