Conjugacy problem for subgroups with applications to Artin groups and braid type group.

(English summary)

Let H be a subgroup of a group G and let $\varphi: G \to K$ be a homomorphism from G to another group K, such that $H = \varphi^{-1}(K')$ for a finite subgroup K' of K. Moreover, assume that the following conditions are satisfied:

1. Given $x, y \in G$, it is possible to decide whether x and y are conjugate in G and, if they are, to compute an element $c \in G$ satisfying $x^c = y$; this is referred to as the explicit conjugacy problem.
2. For every $x \in G$, the centraliser $C_G(x)$ of x in G is finitely generated and can be computed.
3. Given elements $d_1, \ldots, d_k \in K$ and $b \in K$, it is possible to decide whether b is contained in the subgroup of K generated by d_1, \ldots, d_k and, if it is, to express b as a word in d_1, \ldots, d_k.

The author shows that under the above conditions, there is an algorithm which for given $x, y \in H$ decides whether x and y are conjugate in H and, if they are, computes an element $c \in H$ satisfying $x^c = y$. The algorithm, in the worst case, involves one test for membership in $\varphi(C_G(x))$ for every element of K'.

The above result is used to obtain solutions to the explicit conjugacy problem in some groups, in particular in the affine Artin groups of types \tilde{A}_n and \tilde{C}_n.

Reviewed by Volker Gebhardt

References

Note: This list reflects references listed in the original paper as accurately as possible with no attempt to correct errors.

© Copyright American Mathematical Society 2007