MR2154106 (2006b:34050) 34B15
Grossinho, M. R. [Grossinho, Maria do Rosário] (P-TUL-IS);
Minhós, F. M. (P-EVOR-CIM); Santos, A. I. (P-EVOR-CIM)

Solvability of some third-order boundary value problems with asymmetric unbounded nonlinearities. (English summary)

The authors prove the existence of a solution to the boundary value problems
\[u''' = f(t, u, u', u''), \]
\[u(a) = A, \]
\[c_1 u'(a) - c_2 u''(a) = B, \]
\[c_3 u'(b) - c_4 u''(b) = C, \]
where \(c_i > 0 \) for \(i = 1, \ldots, 4 \), or \(c_1 = c_3 = 0 \), and in both cases \(A, B \) and \(C \) are arbitrary real numbers. The continuous function \(f: [a, b] \times \mathbb{R}^3 \to \mathbb{R} \) is supposed to satisfy the one-sided Nagumo condition
\[f(t, x, y, z) \leq \varphi(|z|), \]
where \(\varphi \) is a continuous function such that
\[\int_{0}^{\infty} \frac{\xi}{\varphi(\xi)} d\xi = +\infty. \]

In addition, the authors assume the existence of lower and upper solutions \(\alpha, \beta \) such that \(\alpha' \leq \beta' \).
The novelty of this result is in the fact that the Nagumo condition is one-sided only.

Reviewed by Bogdan Przeradzki (Łódź)

References

2. A. Cabada, R.L. Pouso, Existence results for the problem \((\varphi(u'))' = f(t, u, u') \) with nonlinear boundary conditions, Nonlinear Anal. 35 (1999) 221–231. MR1643240 (2000e:34028)
5. C. De Coster, P. Habets, Upper and lower solutions in the theory of ODE boundary value problems: classical and recent results, Institut de Mathématique Pure et Appliquée, Université Catholique de Louvain, Recherches de Mathématique 52, April 1996. MR1465239 (98e:34034)

Note: This list reflects references listed in the original paper as accurately as possible with no attempt to correct errors.

© Copyright American Mathematical Society 2006, 2007