On some third order nonlinear boundary value problems: Existence, location and multiplicity results

Feliz Manuel Minhós

Departmento de Matemática, Universidade de Évora, Centro de Investigação em Matemática e Aplicações da UE, Rua Romão Ramalho, 7000-671 Évora, Portugal

Received 18 April 2007
Available online 11 August 2007
Submitted by Goong Chen

Abstract

We prove an Ambrosetti–Prodi type result for the third order fully nonlinear equation

\[u'''(t) + f(t, u(t), u'(t), u''(t)) = sp(t) \]

with \(f : [0, 1] \times \mathbb{R}^3 \to \mathbb{R} \) and \(p : [0, 1] \to \mathbb{R}^+ \) continuous functions, \(s \in \mathbb{R} \), under several two-point separated boundary conditions. From a Nagumo-type growth condition, an \textit{a priori} estimate on \(u'' \) is obtained. An existence and location result will be proved, by degree theory, for \(s \in \mathbb{R} \) such that there exist lower and upper solutions. The location part can be used to prove the existence of positive solutions if a non-negative lower solution is considered. The existence, nonexistence and multiplicity of solutions will be discussed as \(s \) varies.

© 2007 Elsevier Inc. All rights reserved.

Keywords: Nagumo-type conditions; Lower and upper solution; Topological degree; Ambrosetti–Prodi problems

1. Introduction

In this paper we study the following third order fully nonlinear equation

\[u'''(t) + f(t, u(t), u'(t), u''(t)) = sp(t), \quad (E_s) \]

for \(f : [0, 1] \times \mathbb{R}^3 \to \mathbb{R} \) and \(p : [0, 1] \to \mathbb{R}^+ \) continuous functions and \(s \) a real parameter, with several types of two-point boundary conditions.

If the boundary conditions are

\[u(0) = A, \quad au'(0) - bu''(0) = B, \quad cu'(1) + du''(1) = C, \]

(1)

for \(a, b, c, d, A, B, C \in \mathbb{R} \) and \(b, d \geq 0 \) such that \(a^2 + b > 0 \) and \(c^2 + d > 0 \) an existence result is proved, for values of \(s \) such that there are lower and upper solutions to the problem \((E_s)\)–(1).
In Section 3 we consider boundary conditions
\[u(0) = 0, \quad au'(0) - bu''(0) = 0, \quad cu'(1) + du''(1) = 0 \] (2)
with \(a, b, c, d \geq 0 \) such that \(a + b > 0, \ c + d > 0 \) and proving that the existence of solutions for the problem (E_s)--(2) depends on \(s \).

Considering, in (2), \(b = d = 0 \) with \(a, c > 0 \) the two-point boundary conditions are
\[u(0) = u'(0) = u'(1) = 0, \] (3)
an Ambrosetti–Prodi type result is obtained in Section 4. That is, we prove that there are \(s_0, s_1 \in \mathbb{R} \) such that (E_s)--(3) has no solution if \(s < s_0 \), it has at least one solution if \(s = s_0 \) and (E_s)--(3) has at least two solutions for \(s \in [s_0, s_1] \).

Equation (E_s) can be seen as a generalized model for various physical, natural or physiological phenomena such as the flow of a thin film of viscous fluid over a solid surface [1,12], the solitary waves solution of the Korteweg–de Vries equation [8] or the thyroid-pituitary interaction [3]. The problem (E_s)--(1) can model the static deflection of an elastic beam with linear supports at both endpoints.

The arguments used were suggested by several papers namely [4], applied to second order periodic problems [11], to third order three points boundary value problems [5–7], for two-point boundary value problems. In short, they make use of a Nagumo-type growth condition [10], the upper and lower solutions technique [2], and Leray–Schauder degree theory [9].

2. Preliminary results

In the following, \(C([0, 1]) \) denotes the space of continuous functions with the norm
\[\|x\| = \max_{t \in [0, 1]} |x(t)|. \]
Moreover, \(C^k([0, 1]) \) denotes the space of real valued functions with continuous \(i \)-derivative in \([0, 1]\), for \(i = 1, \ldots, k \), equipped with the norm
\[\|x\|_{C^k} = \max_{0 \leq i \leq k} \{ |x^{(i)}(t)| : t \in [0, 1] \}. \]

Some growth conditions on the nonlinearity of (E_s) will be assumed in the following. The first one is given by the next definition and provides also an \textit{a priori} estimate for the second derivative of solutions \(u \) of (E_s), if some bounds on \(u \) and \(u' \) are verified.

\textbf{Definition 1.} A continuous function \(g : [0, 1] \times \mathbb{R}^3 \rightarrow \mathbb{R} \) is said to satisfy Nagumo-type condition in
\[E = \{(t, x, y, z) \in [0, 1] \times \mathbb{R}^3 : \gamma_0(t) \leq x \leq \Gamma_0(t), \ \gamma_1(t) \leq y \leq \Gamma_1(t)\}, \]
with \(\gamma_0, \gamma_1, \Gamma_0 \) and \(\Gamma_1 \) continuous functions such that \(\gamma_0(t) \leq \Gamma_0(t), \ \gamma_1(t) \leq \Gamma_1(t) \), for every \(t \in [0, 1] \), if there exists a continuous function \(h_E : \mathbb{R}_0^+ \rightarrow [k, +\infty] \), for some fixed \(k > 0 \), such that
\[|g(t, x, y, z)| \leq h_E(|z|), \quad \forall (t, x, y, z) \in E, \] (4)
with
\[\int_0^{+\infty} \frac{\xi}{h_E(\xi)} d\xi = +\infty. \] (5)

If these assumptions hold for every \(E \subset [0, 1] \times \mathbb{R}^3 \), given above, then \(g \) is said to satisfy Nagumo-type conditions.

\textbf{Lemma 2.} Let \(f : [0, 1] \times \mathbb{R}^3 \rightarrow \mathbb{R} \) be a continuous function that satisfies Nagumo-type conditions (4) and (5) in
\[E = \{(t, x, y, z) \in [0, 1] \times \mathbb{R}^3 : \gamma_0(t) \leq x \leq \Gamma_0(t), \ \gamma_1(t) \leq y \leq \Gamma_1(t)\}, \] (6)
where \(\gamma_0, \gamma_1, \Gamma_0, \Gamma_1 \) are continuous functions. Then there is \(r_s > 0 \) (depending only on the parameter \(s \) and on the functions \(p, h_E, \gamma_1 \) and \(\Gamma_1 \)) such that every solution \(u(t) \) of (E_s) verifying

\[\gamma_0(t) \leq u(t) \leq \Gamma_0(t), \quad \gamma_1(t) \leq u'(t) \leq \Gamma_1(t) \]

for every \(t \in [0,1] \), satisfies

\[\|u''\| < r^*. \]

Remark 1. We observe that \(r^* \) can be taken independent of \(s \) as long as \(s \) belongs to some bounded set.

Proof. Considering the non-negative number

\[\eta = \max \{ \Gamma_1(1) - \gamma_1(0), \Gamma_1(0) - \gamma_1(1) \} \]

and \(r > \eta \) such that

\[\int_{\eta}^{r} \frac{\xi}{h_E(\xi) + |s||p|} \, d\xi \geq \max_{t \in [0,1]} \Gamma_1(t) - \min_{t \in [0,1]} \gamma_1(t), \]

then the proof follows from [5, Lemma 1], as \((E_s)\) is a particular case of the equation there assumed. \(\Box \)

The appropriate definition of lower and upper-solutions for problem \((E_s)-(1)\) is now given.

Definition 3. Consider \(a, b, c, d, A, B, C \in \mathbb{R} \) such that \(b, d \geq 0, a^2 + b > 0 \) and \(c^2 + d > 0 \).

(i) A function \(\alpha(t) \in C^3([0,1]) \cap C^2([0,1]) \) is a lower solution of \((E_s)-(1)\) if

\[\alpha'''(t) + f(t, \alpha(t), \alpha'(t), \alpha''(t)) \geq sp(t), \quad \text{if } t \in]0,1[, \]

and

\[\alpha(0) \leq A, \quad a\alpha'(0) - ba''(0) \leq B, \quad c\alpha'(1) + da''(1) \leq C. \]

(ii) A function \(\beta(t) \in C^3([0,1]) \cap C^2([0,1]) \) is an upper solution of \((E_s)-(1)\) if

\[\beta'''(t) + f(t, \beta(t), \beta'(t), \beta''(t)) \leq sp(t), \quad \text{if } t \in]0,1[, \]

and

\[\beta(0) \geq A, \quad a\beta'(0) - b\beta''(0) \geq B, \quad c\beta'(1) + d\beta''(1) \geq C. \]

For \(s \) such that there are upper and lower solutions of \((E_s)-(1)\) with first derivative “well ordered,” an existence result and some information concerning the location of the solution of \((E_s)-(1)\) and its derivative are obtained.

Theorem 4. Let \(f : [0,1] \times \mathbb{R}^3 \to \mathbb{R} \) be a continuous function. Suppose that there are lower and upper solutions of \((E_s)-(1)\), \(\alpha(t) \) and \(\beta(t) \), respectively, such that, for \(t \in [0,1] \),

\[\alpha'(t) \leq \beta'(t) \]

and \(f \) satisfies Nagumo-type conditions (4) and (5) in

\[E_s = \{(t, x, y, z) \in [0,1] \times \mathbb{R}^3 : \alpha(t) \leq x \leq \beta(t), \alpha'(t) \leq y \leq \beta'(t) \}. \]

If \(f \) verifies

\[f(t, \alpha(t), y, z) \leq f(t, x, y, z) \leq f(t, \beta(t), y, z), \]

for fixed \(t, y, z \in [0,1] \times \mathbb{R}^2 \) and \(\alpha(t) \leq x \leq \beta(t) \), then \((E_s)-(1)\) has at least one solution \(u(t) \in C^3([0,1]) \) satisfying

\[\alpha(t) \leq u(t) \leq \beta(t), \quad \alpha'(t) \leq u'(t) \leq \beta'(t), \quad \forall t \in [0,1]. \]
Proof. Define the auxiliary continuous functions

\[
\delta_0(t, x) = \begin{cases}
\beta(t) & \text{if } x > \beta(t), \\
\alpha(t) & \text{if } x < \alpha(t), \\
x & \text{if } \alpha(t) \leq x \leq \beta(t),
\end{cases}
\]

and

\[
\delta_1(t, y) = \begin{cases}
\beta'(t) & \text{if } y > \beta'(t), \\
\alpha'(t) & \text{if } y < \alpha'(t), \\
y & \text{if } \alpha'(t) \leq y \leq \beta'(t),
\end{cases}
\]

and, for \(\lambda \in [0, 1]\), the modified problem composed, by

\[
u''(t) + \lambda f(t, \delta_0(t, u(t)), \delta_1(t, u'(t)), u''(t)) - u'(t) + \lambda \delta_1(t, u'(t)) = \lambda sp(t)
\]

and the boundary conditions

\[
\begin{align*}
u(0) &= \lambda A, \\
u'(0) &= \lambda \left[B - a \delta_1(0, u'(0)) + bu''(0) + \delta_1(0, u'(0)) \right], \\
u'(1) &= \lambda \left[C - c \delta_1(1, u'(1)) - du''(1) + \delta_1(1, u'(1)) \right].
\end{align*}
\]

Taking \(r_1 > 0\) such that, for every \(t \in [0, 1]\),

\[
\begin{align*}
-r_1 &\leq \alpha'(t) \leq \beta'(t) \leq r_1, \\
sp(t) - f(t, \alpha(t), \alpha'(t), 0) - r_1 - \alpha'(t) &< 0, \\
sp(t) - f(t, \beta(t), \beta'(t), 0) + r_1 - \beta'(t) &> 0
\end{align*}
\]

and

\[
\begin{align*}
|B + (1-a)\beta'(0)| &< r_1, \\
|B + (1-a)\alpha'(0)| &< r_1, \\
|C + (1-c)\beta'(1)| &< r_1, \\
|C + (1-c)\alpha'(1)| &< r_1
\end{align*}
\]

the proof follows the arguments used in [5, Theorem 1]. So, only the following details due to a more general boundary conditions are included.

In Step 1 it is proved that every solution \(u\) of (10)–(11) satisfies \(|u'(t)| < r_1\) and \(|u(t)| < r_0\), for every \(t \in [0, 1]\) and \(r_0 := r_1 + |A|\), independently of \(\lambda\).

In Step 2, the set

\[E_r = \{ (t, x, y, z) \in [0, 1] \times \mathbb{R}^3; |x| \leq r_0, |y| \leq r_1 \}\]

and the function \(F_\lambda : E_r \rightarrow \mathbb{R}\) given by

\[
F_\lambda(t, x, y, z) := \lambda f(t, \delta_0(t, x), \delta_1(t, y), z) - y + \lambda \delta_1(t, y)
\]

are considered. As \(|F_\lambda(t, x, y, z)| \leq 2r_1 + h_{E_\lambda}(|z|)\) and

\[
\int_0^{+\infty} \frac{z}{2r_1 + h_{E_\lambda}(z)} \, dz = +\infty
\]

then \(F_\lambda\) satisfies a Nagumo-type condition in \(E_\lambda\) and the assumptions of Lemma 2 are verified.

In Step 3 the nonlinear operator \(N_\lambda\) is defined by

\[
N_\lambda u = (-\lambda f(t, \delta_0(t, u(t)), \delta_1(t, u'(t)), u''(t)) + u'(t) - \lambda \delta_1(t, u'(t)) + \lambda sp(t), \lambda A, B_\lambda, C_\lambda)
\]

with

\[
B_\lambda := \lambda \left[B - a \delta_1(0, u'(0)) + bu''(0) + \delta_1(0, u'(0)) \right], \\
C_\lambda := \lambda \left[C - c \delta_1(1, u'(1)) - du''(1) + \delta_1(1, u'(1)) \right]
\]

and the Leray–Schauder degree is evaluated in the set

\[\Omega = \{ x \in C^2([0, 1]): \|x\| < r_0, \|x'\| < r_1, \|x''\| < r_2 \} \]
Example. Consider the differential equation

\[u''(t) + |u''(t)|^\theta - k[u'(t)]^{2n+1} + [u(t)]^{2m+1} = sp(t) \tag{12} \]

for \(t \in [0, 1], \theta \in [0, 2], n, m \in \mathbb{N}, k > 0, s \in \mathbb{R} \) and \(p : [0, 1] \to \mathbb{R}^+ \) a continuous function, with the boundary conditions

\[u(0) = 0, \quad au'(0) - bu''(0) = B, \quad cu'(1) + du''(1) = C, \tag{13} \]

for \(B, C \in \mathbb{R}, a, b, c, d \geq 0 \) with \(a + b > 0 \) and \(c + d > 0 \).

If \(a, c, B \) and \(C \) are such that \(|B| \leq a \) and \(|C| \leq c \) then functions \(\alpha, \beta : [0, 1] \to \mathbb{R} \) given by \(\alpha(t) = -t \) and \(\beta(t) = t \)

are, respectively, lower and upper solutions of problem (12)--(13) for \(|s| \leq \frac{k}{\|p\|} \). As

\[f(t, x, y, z) = |z|^\theta - ky^{2n+1} + x^{2m+1} \]

is continuous and verifies Nagumo-type assumptions (4) and (5) in

\[E = \{(t, x, y, z) \in [0, 1] \times \mathbb{R}^3 : |x| \leq t, \ |y| \leq 1\} \tag{14} \]

for \(h_E(z) = k + 1 + |z|^\theta \) then, by Theorem 4, problem (12) has at least one solution \(u(t) \) such that

\[-t \leq u(t) \leq t, \quad -1 \leq u'(t) \leq 1, \quad \forall t \in [0, 1], \]

for \(|s| \leq \frac{k}{\|p\|} \).

3. Existence and nonexistence results

A first discussion concerning the dependence on \(s \) of the existence and nonexistence of a solution will be given in the special case that \(A = B = C = 0 \) and \(a, b, c, d \geq 0 \) with \(a + b > 0, c + d > 0 \), that is, for \((E_s)-(2)\). Lower and upper solutions definitions for this problem are obtained considering in Definition 3 these restrictions.

Theorem 5. Let \(f : [0, 1] \times \mathbb{R}^3 \to \mathbb{R} \) be a continuous function satisfying a Nagumo-type condition and such that

(i) for \((t, y, z) \in [0, 1] \times \mathbb{R}^2\)

\[x_1 \geq x_2 \Rightarrow f(t, x_1, y, z) \geq f(t, x_2, y, z); \tag{15} \]

(ii) for \((t, x, z) \in [0, 1] \times \mathbb{R}^2\)

\[y_1 \geq y_2 \Rightarrow f(t, x, y_1, z) \leq f(t, x, y_2, z); \tag{16} \]

(iii) there are \(s_1 \in \mathbb{R} \) and \(r > 0 \) such that

\[\frac{f(t, 0, 0, 0)}{p(t)} < s_1 < \frac{f(t, x, -r, 0)}{p(t)}, \tag{17} \]

for every \(t \in [0, 1] \) and every \(x \leq -r \). Then there is \(s_0 \leq s_1 \) (with the possibility that \(s_0 = -\infty \)) such that

(1) for \(s < s_0 \), \((E_s)-(2)\) has no solution;

(2) for \(s_0 < s \leq s_1 \), \((E_s)-(2)\) has at least one solution.

Proof. Step 1. There is \(s^* < s_1 \) such that \((E_{s^*})-(2)\) has a solution.

Defining

\[s^* = \max \left\{ \frac{f(t, 0, 0, 0)}{p(t)}, \ t \in [0, 1] \right\}, \]

by (17), there exists \(t^* \in [0, 1] \) such that

\[\frac{f(t, 0, 0, 0)}{p(t)} \leq s^* = \frac{f(t^*, 0, 0, 0)}{p(t^*)} < s_1, \quad \forall t \in [0, 1], \]

and, by the first inequality, \(\beta(t) \equiv 0 \) is an upper solution of \((E_{s^*})-(2)\).
The function $\alpha(t) = -rt$ is a lower solution of $(E_x^*)-(2)$. In fact, as $\alpha(t) \geq -r$, $\alpha'(t) = -r$ and $\alpha''(t) = \alpha'''(t) = 0$, then, by (17) and (15),

$$\alpha'''(t) = 0 > s_1 p(t) - f(t, -r, -r, 0) \geq s_1 p(t) - f(t, -rt, -r, 0) > s^* p(t) - f(t, -rt, -r, 0).$$

(18)

So, by Theorem 4, there is, at least a solution of $(E_x^*)-(2)$ with $s^* < s_1$.

Step 2. If $(E_x)-(2)$ has a solution for $s = \sigma < s_1$, then it has at least one solution for $s \in [\sigma, s_1]$.

Suppose that $(E_\sigma)-(2)$ has a solution $u_\sigma(t)$. For s such that $\sigma \leq s \leq s_1$,

$$u_\sigma''(t) = \sigma p(t) - f(t, u_\sigma(t), u_\sigma'(t), u_\sigma''(t)) \leq p(t) - f(t, u_\sigma(t), u_\sigma'(t), u_\sigma''(t))$$

and so $u_\sigma(t)$ is an upper solution of $(E_s)-(2)$ for every s such that $\sigma \leq s \leq s_1$.

For $r > 0$ given by (17) take $R \geq r$ large enough such that

$$u_\sigma'(0) \geq -R, \quad u_\sigma'(1) \geq -R \quad \text{and} \quad \min_{t \in [0,1]} u_\sigma(t) \geq -R.$$

(19)

Since, by (17) and (15), for $s \leq s_1$,

$$0 > s_1 p(t) - f(t, -R, -r, 0) \geq s p(t) - f(t, -Rt, -R, 0)$$

and $-aR \leq 0, -cR \leq 0$ then $\alpha(t) = -Rt$ is a lower solution of $(E_s)-(2)$ for $s \leq s_1$.

To apply Theorem 4 the condition

$$-R \leq u_\sigma'(t), \quad \forall t \in [0,1],$$

(20)

must be verified. Suppose that (20) is not true. Therefore there is $t \in [0,1]$ such that $u_\sigma'(t) < -R$. Defining

$$\min_{t \in [0,1]} u_\sigma'(t) := u_\sigma'(t_0) \quad (< -R)$$

then, by (19), $t_0 \in]0, 1[, u_\sigma''(t_0) = 0$, $u_\sigma''(t_0) \geq 0$ and, by (16), (19) and (17), the following contradiction

$$0 \leq u_\sigma''(t_0) = \sigma p(t_0) - f(t_0, u_\sigma(t_0), u_\sigma'(t_0), u_\sigma''(t_0)) \leq \sigma p(t_0) - f(t_0, u_\sigma(t_0), -R, 0) \leq s_1 p(t_0) - f(t_0, -R, -R, 0) < 0$$

is obtained. So $-R \leq u_\sigma'(t)$, for every $t \in [0,1]$, and, by Theorem 4, problem $(E_x)-(2)$ has at least a solution $u(t)$ for every s such that $\sigma \leq s \leq s_1$.

Step 3. There is $s_0 \in \mathbb{R}$ such that:

- for $s < s_0$, $(E_x)-(2)$ has no solution;
- for $s \in [s_0, s_1]$, $(E_x)-(2)$ has at least a solution.

Let $S = \{s \in \mathbb{R} : (E_s)-(2)$ has at least a solution$\}$. As, by Step 1, $s^* \in S$ then $S \neq \emptyset$. Defining $s_0 = \inf S$, by Step 1, $s_0 \leq s^* < s_1$ and, by Step 2, $(E_x)-(2)$ has at least a solution for $s \in [s_0, s_1]$ and $(E_x)-(2)$ has no solution for $s < s_0$.

Observe that if $s_0 = -\infty$ then, by Step 2, $(E_x)-(2)$ has a solution for every $s \leq s_1$.

A variant of Theorem 5 can be obtained replacing, in (17), f by $-f$ and x by $-x$.

Theorem 6. Let $f : [0,1] \times \mathbb{R}^3 \rightarrow \mathbb{R}$ be a continuous function satisfying a Nagumo-type condition and growth assumptions (15) and (16). If there are $s_1 \in \mathbb{R}$ and $r > 0$ such that

$$\frac{f(t, 0, 0, 0)}{p(t)} > s_1 > \frac{f(t, x, r, 0)}{p(t)},$$

for every $t \in [0,1]$ and every $x \geq r$, then there is $s_0 > s_1$ (with the possibility that $s_0 = +\infty$) such that

1. for $s > s_0$, $(E_x)-(2)$ has no solution;
2. for $s_0 > s \geq s_1$, $(E_x)-(2)$ has at least one solution.
4. Multiplicity results

In the particular case of boundary conditions (1) where \(b = d = A = B = C = 0 \) and \(a, c > 0 \) is proved the existence of a second solution for problem \((E_s)–(3)\) as a consequence of a non-null degree for the same operator in two disjoint sets.

The arguments are based on strict lower and upper solutions and some new assumptions on the nonlinearity.

Definition 7. Consider \(\alpha, \beta : [0, 1] \to \mathbb{R} \) such that \(\alpha, \beta \in C^3([0, 1]) \cap C^2([0, 1]) \).

(i) \(\alpha(t) \) is a strict lower solution of \((E_s)–(3)\) if

\[
\alpha''(t) + f(t, \alpha(t), \alpha'(t), \alpha''(t)) > sp(t), \quad \text{if } t \in]0, 1[,
\]

and

\[
\alpha(0) \leq 0, \quad \alpha'(0) < 0, \quad \alpha'(1) < 0. \tag{21}
\]

(ii) \(\beta(t) \) is a strict upper solution of \((E_s)–(3)\) if

\[
\beta''(t) + f(t, \beta(t), \beta'(t), \beta''(t)) < sp(t), \quad \text{if } t \in]0, 1[,
\]

and

\[
\beta(0) \geq 0, \quad \beta'(0) > 0, \quad \beta'(1) > 0. \tag{22}
\]

Define the set \(X = \{ x \in C^2([0, 1]) : x(0) = x'(0) = x'(1) = 0 \} \) and the operators \(L : \text{dom}L \to C([0, 1]), \) with \(\text{dom}L = C^3([0, 1]) \cap X \), given by \(Lu = u''' \) and, for \(s \in \mathbb{R}, \ N_s : C^2([0, 1]) \cap X \to C([0, 1]) \) given by

\[
N_su = f(t, u(t), u'(t), u''(t)) - sp(t).
\]

For an open and bounded set \(\Omega \subset X \), the operator \(L + N_s \) is \(L \)-compact in \(\overline{\Omega} \) [9]. Note that in \(\text{dom}L \) the equation \(Lu + N_su = 0 \) is equivalent to problem \((E_s)–(3)\).

The next result will be an important tool used to evaluate the Leray–Schauder topological degree.

Lemma 8. Consider a continuous function \(f : [0, 1] \times \mathbb{R}^3 \to \mathbb{R} \) verifying a Nagumo-type condition and (15). If there are strict lower and upper solutions of \((E_s)–(3)\), \(\alpha(t) \) and \(\beta(t) \), respectively, such that

\[
\alpha'(t) < \beta'(t), \quad \forall t \in [0, 1],
\]

then there is \(\rho_2 > 0 \) such that \(d(L + N_s, \Omega) = \pm 1 \) for

\[
\Omega = \{ x \in \text{dom}L : \alpha(t) < x(t) < \beta(t), \ \alpha'(t) < x'(t) < \beta'(t), \ \| x'' \| < \rho_2 \}.
\]

Remark 2. The set \(\Omega \) can be taken the same for \((E_s)–(3)\), independent of \(s \), as long as \(\alpha \) and \(\beta \) are strict lower and upper solutions for \((E_s)–(3)\) and \(s \) belongs to a bounded set.

Proof. For the auxiliary functions \(\delta_0, \delta_1 \) defined in (8) and (9) consider the modified problem

\[
\begin{cases}
\begin{align*}
&u'''(t) + F(t, u(t), u'(t), u''(t)) = sp(t), \\
&u(0) = u'(0) = u'(1) = 0,
\end{align*}
\end{cases} \tag{23}
\]

where \(F : [0, 1] \times \mathbb{R}^3 \to \mathbb{R} \) is the continuous function given by

\[
F(t, x, y, z) = f(t, \delta_0(t, x), \delta_1(t, y), z) - y + \delta_1(t, y)
\]

and define the operator \(F_s : C^2([0, 1]) \cap X \to C([0, 1]) \) by

\[
F_su = F(t, u(t), u'(t), u''(t)) - sp(t).
\]
With these definitions problem (23) is equivalent to the equation $Lu + F_su = 0$ in $\text{dom} L$. For $\lambda \in [0, 1]$ and $u \in \text{dom} L$ consider the homotopy

$$H_\lambda u := Lu - (1 - \lambda)u'' + \lambda F_\lambda u$$

and take $\rho_1 > 0$ large enough such that, for every $t \in [0, 1]$,

$$-\rho_1 \leq \alpha'(t) < \beta'(t) \leq \rho_1,$$

$$sp(t) - f(t, \alpha(t), \alpha'(t), 0) - \rho_1 - \alpha'(t) < 0$$

and

$$sp(t) - f(t, \beta(t), \beta'(t), 0) + \rho_1 - \beta'(t) > 0.$$

Following the arguments referred in the proof of Theorem 4, there is $\rho_2 > 0$ such that every solution $u(t)$ of $H_\lambda u = 0$ satisfies $\|u'\| < \rho_1$ and $\|u''\| < \rho_2$, independently of $\lambda \in [0, 1]$. Defining

$$\Omega_1 = \{ x \in \text{dom} L: \|x'\| < \rho_1, \|x''\| < \rho_2 \}$$

then, every solution u of $H_\lambda u = 0$ belongs to Ω_1 for every $\lambda \in [0, 1], u \notin \partial \Omega_1$ and the degree $d(H_\lambda, \Omega_1)$ is well defined, for every $\lambda \in [0, 1]$.

For $\lambda = 0$ the equation $H_0 u = 0$, that is, the linear problem

$$\begin{cases} u'''(t) - u''(t) = 0, \\ u(0) = u'(0) = u''(1) = 0 \end{cases}$$

has only the trivial solution and, by degree theory, $d(H_0, \Omega_1) = \pm 1$. By the invariance under homotopy

$$\pm 1 = d(H_0, \Omega_1) = d(H_1, \Omega_1) = d(L + F_\lambda, \Omega_1). \quad (24)$$

In the sequel it is proved that if $u \in \Omega_1$ is a solution of $Lu + F_\lambda u = 0$ then $u \in \Omega$.

In fact, by (24), there is $u_1(t) \in \Omega_1$ solution of $Lu + F_\lambda u = 0$. Assume, by contradiction, that there is $t \in [0, 1]$ such that $u_1(t) \leq \alpha'(t)$ and define

$$\min_{t \in [0, 1]} [u_1(t) - \alpha'(t)] := u_1'(t_1) - \alpha'(t_1) \quad (\leq 0).$$

From (21) $t_1 \in [0, 1], u_1''(t_1) - \alpha''(t_1) = 0$ and $u_1'''(t_1) - \alpha'''(t_1) \geq 0$. By (15), the following contradiction:

$$u_1'''(t_1) = sp(t_1) - F(t_1, u_1(t_1), u_1'(t_1), u_1''(t_1))$$

$$= sp(t_1) - f(t_1, \delta_0(t_1, u_1(t_1)), \delta_1(t_1, u_1'(t_1)), u_1''(t_1)) + u_1'(t_1) - \delta_1(t_1, u_1'(t_1))$$

$$\leq sp(t_1) - f(t_1, \alpha(t_1), \alpha'(t_1), \alpha''(t_1)) + u_1'(t_1) - \alpha'(t_1)$$

$$\leq sp(t_1) - f(t_1, \alpha(t_1), \alpha'(t_1), \alpha''(t_1)) < \alpha'''(t_1)$$

is achieved. Therefore $u_1'(t) > \alpha'(t)$, for $t \in [0, 1]$. In a similar way it can be proved that $u_1'(t) < \beta'(t)$, for every $t \in [0, 1]$ and so $u_1 \in \Omega$.

As the equations $Lu + F_\lambda u = 0$ and $Lu + N_\lambda u = 0$ are equivalent on Ω then

$$d(L + F_\lambda, \Omega_1) = d(L + F_\lambda, \Omega) = d(L + N_\lambda, \Omega) = \pm 1,$$

by (24) and the excision property of the degree. \hfill \Box

The main result is attained assuming that f is bounded from below and it satisfies some adequate condition of monotonicity-type which requires different "speeds" of growth.

Theorem 9. Let $f : [0, 1] \times \mathbb{R}^3 \to \mathbb{R}$ be a continuous function such that the assumptions of Theorem 5 are fulfilled. Suppose that there is $M > -r$ such that every solution u of (E$_s$)–(3), with $s \leq s_1$, satisfies

$$u'(t) < M, \quad \forall t \in [0, 1].$$

(25)
and there exists \(m \in \mathbb{R} \) such that
\[
f(t, x, y, z) \geq mp(t),
\]
for every \((t, x, y, z) \in [0, 1] \times [-r, |M|] \times [-r, M] \times \mathbb{R}, \) with \(r \) given by (17). Then \(s_0, \) provided by Theorem 5, is finite and

1. if \(s < s_0, \) \((E_s)-(3)\) has no solution;
2. if \(s = s_0, \) \((E_s)-(3)\) has at least one solution.

Moreover, let \(M_1 := \max\{r, |M|\} \) and assume that there is \(\theta > 0 \) such that, for every \((t, x, y, z) \in [0, 1] \times [-M_1, M_1]^2 \times \mathbb{R} \) and \(0 \leq \eta \leq 1, \)
\[
f(t, x + \eta\theta, y + \theta, z) \leq f(t, x, y, z).
\]

Then

3. for \(s \in [s_0, s_1], \) \((E_s)-(3)\) has at least two solutions.

Proof. Step 1. Every solution \(u(t) \) of \((E_s)-(3), \) for \(s \in [s_0, s_1], \) satisfies \(-r < u'(t) < M \) and \(-r < u(t) < |M|, \) with \(r \) given by (17) and \(t \in [0, 1]. \)

For first condition, by (25), it will be enough to show that \(-r < u'(t), \) for every \(t \in [0, 1] \) and for every solution \(u \) of \((E_s)-(3), \) with \(s \leq s_1. \)

Suppose, by contradiction, that there are \(s \in [s_0, s_1], \) a solution \(u \) of \((E_s)-(3)\) and \(t_2 \in [0, 1] \) such that
\[
u'(t_2) := \min_{t \in [0, 1]} u'(t) \leq -r.
\]

By (3), \(t_2 \in [0, 1], u''(t_2) = 0 \) and \(u'''(t_2) \geq 0. \) By (16),
\[
0 \leq u'''(t_2) = sp(t_2) - f(t_2, u(t_2), u'(t_2), u''(t_2)) \leq s_1 p(t_2) - f(t_2, u(t_2), -r, 0).
\]

If \(u(t_2) < -r, \) from (17) the following contradiction:
\[
0 \leq s_1 p(t_2) - f(t_2, u(t_2), -r, 0) \leq s_1 p(t_2) - f(t_2, -r, -r, 0) < 0
\]
is obtained. If \(u(t_2) \geq -r, \) from (15) and (17), the same contradiction is achieved. Then every solution \(u \) of \((E_s)-(3), \) with \(s_0 < s \leq s_1, \) verifies
\[
u'(t) > -r, \quad \forall t \in [0, 1].
\]

So, by (25), \(-r < u(t) < M, \) for every \(t \in [0, 1]. \) Integrating on \([0, t], \) we obtain
\[
-r \leq -rt < u(t) < Mt \leq |M|, \quad \forall t \in [0, 1].
\]

Step 2. The number \(s_0 \) is finite.

Suppose that \(s_0 = -\infty, \) that is, by Theorem 5, for every \(s \leq s_1 \) problem \((E_s)-(3)\) has at least a solution. Define \(p_1 := \min_{t \in [0, 1]} p(t) > 0 \) and take \(s \) sufficiently negative such that
\[
m - s > 0 \quad \text{and} \quad \frac{(m - s)p_1}{16} > M.
\]

If \(u(t) \) is a solution of \((E_s)-(3), \) then, by (26),
\[
u'''(t) = sp(t) - f(t, u(t), u'(t), u''(t)) \leq (s - m)p(t)
\]
and, by (3), there is \(t_3 \in [0, 1] \) such that \(u''(t_3) = 0. \) For \(t < t_3 \)
\[
u''(t) = \int_{t_3}^{t} u''(\xi) d\xi \geq \int_{t}^{t_3} (m - s)p(\xi) d\xi \geq (m - s)(t_3 - t)p_1.
\]
For $t \geq t_3$

$$u''(t) = \int_{t_3}^{t} u'''(\xi) d\xi \leq (s - m)(t - t_3)p_1.$$

Choose $I = [0, \frac{1}{4}]$, or $I = [\frac{3}{4}, 1]$, such that $|t_3 - t| \geq \frac{1}{4}$, for every $t \in I$. If $I = [0, \frac{1}{4}]$, then

$$u''(t) \geq \frac{(m - s)p_1}{4}, \quad \forall t \in I,$$

and if $I = [\frac{3}{4}, 1]$, then

$$u''(t) \leq \frac{(s - m)p_1}{4}, \quad \forall t \in I.$$

In the first case,

$$0 = \int_{0}^{\frac{1}{4}} u''(t) dt = \frac{1}{4} \int_{0}^{\frac{1}{4}} u''(t) dt + \int_{\frac{1}{4}}^{1} u''(t) dt \geq \frac{1}{4} \int_{0}^{\frac{1}{4}} (m - s)p_1 dt - u'(\frac{1}{4})$$

$$= \frac{1}{16} (m - s)p_1 - u'(\frac{1}{4}) > M - u'(\frac{1}{4}),$$

which is in contradiction with (25).

For $I = [\frac{3}{4}, 1]$ a similar contradiction is achieved. Therefore, s_0 is finite.

Step 3. For $s \in [s_0, s_1]$ (E_s)–(3) has at least two solutions.

As s_0 is finite, by Theorem 5, for $s_{-1} < s_0$, $(E_{s_{-1}})$–(3) has no solution. By Lemma 2 and Remark 1, we can consider $\rho_2 > 0$ large enough such that the estimate $\|u''\| < \rho_2$ holds for every solution u of (E_s)–(3), with $s \in [s_{-1}, s_1]$.

Let $M_1 := \max \{r, |M|\}$ and define the set

$$\Omega_2 = \{x \in \text{dom } L: \|x'\| < M_1, \|x''\| < \rho_2\}.$$

Then

$$d(L + N_{s_{-1}}, \Omega_2) = 0.$$

By Step 1, if u is a solution of (E_s)–(3), with $s \in [s_{-1}, s_1]$, then $u \notin \partial \Omega_2$. Defining the convex combination of s_1 and s_{-1} as $H(\lambda) = (1 - \lambda)s_{-1} + \lambda s_1$ and considering the corresponding homotopic problems $(E_{H(\lambda)})$–(3), the degree $d(L + N_{H(\lambda)}, \Omega_2)$ is well defined for every $\lambda \in [0, 1]$ and for every $s \in [s_{-1}, s_1]$. Therefore, by (28) and the invariance of the degree

$$0 = d(L + N_{s_{-1}}, \Omega_2) = d(L + N_{s}, \Omega_2),\quad (29)$$

for $s \in [s_{-1}, s_1]$.

Let $\sigma \in [s_0, s_1] \subset [s_{-1}, s_1]$ and $u_\sigma(t)$ be a solution of (E_σ)–(3), which exists by Theorem 5. Take $\varepsilon > 0$ such that

$$|u'_\sigma(t) + \varepsilon| < M_1, \quad \forall t \in [0, 1].$$

Then $\tilde{u}(t) := u_\sigma(t) + \varepsilon$ is a strict upper solution of (E_σ)–(3), with $\sigma < s \leq s_1$. In fact, by (27) with $\theta = \varepsilon$ and $\eta = t$, for such σ,

$$\tilde{u}''(t) = u''_\sigma(t) = \sigma p(t) - f(t, u_\sigma(t), u'_\sigma(t), u''_\sigma(t))$$

$$< sp(t) - f(t, u_\sigma(t), u'_\sigma(t), \tilde{u}''(t))$$

$$\leq sp(t) - f(t, u_\sigma(t) + \varepsilon t, u'_\sigma(t) + \varepsilon, \tilde{u}''(t))$$

$$= sp(t) - f(t, \tilde{u}(t), \tilde{u}'(t), \tilde{u}''(t)),$$

$$\tilde{u}(0) = 0, \quad \tilde{u}'(0) = \tilde{u}'(1) = \varepsilon > 0.$$
Moreover \(\alpha(t) := -r \) is a strict lower solution of \((E_s)-(3)\), for \(s \leq s_1 \). Indeed, by (17) and (15),
\[
\begin{align*}
\alpha''(t) &= 0 > s_1 p(t) - f(t, -r, -r, 0) \geq s p(t) - f(t, -rt, -r, 0), \\
\alpha(0) &= 0, \quad \alpha'(0) = \alpha'(1) = -r < 0.
\end{align*}
\]
By Step 1, \(-r < u'_s(t) \) for every \(t \in [0, 1] \) and therefore \(-r < u'_s'(t) + \varepsilon, \forall t \in [0, 1] \), that is, \(\alpha'(t) < u'(t) \). Integrating on \([0, 1]\)
\[
\alpha(t) \leq \alpha(t) - \alpha(0) < u(t) - \tilde{u}(0) = \tilde{u}(t),
\]
for every \(t \in [0, 1] \).

Then, by (30), Lemma 8 and Remark 2, there is \(\tilde{\rho}_2 > 0 \), independent of \(s \), such that for
\[
\Omega_\varepsilon = \{ x \in \text{dom} L: \alpha(t) < x(t) < \tilde{u}(t), \; \alpha'(t) < x'(t) < \tilde{u}'(t), \; \| x'' \| < \tilde{\rho}_2 \}
\]
the degree of \(L + N_s \) in \(\Omega_\varepsilon \) satisfies
\[
d(L + N_s, \Omega_\varepsilon) = \pm 1, \quad \text{for } s \in [\sigma, s_1].
\]
Taking \(\rho_2 \) in \(\Omega_2 \) large enough such that \(\Omega_\varepsilon \subset \Omega_2 \), by (29), (30) and the additivity of the degree, we obtain
\[
d(L + N_s, \Omega_2 - \Omega_\varepsilon) = \mp 1, \quad \text{for } s \in [\sigma, s_1].
\]
So, problem \((E_s)-(3)\) has at least two solutions \(u_1, u_2 \) such that \(u_1 \in \Omega_\varepsilon \) and \(u_2 \in \Omega_2 - \Omega_\varepsilon \), for \(s \in [s_0, s_1] \), since \(\sigma \) is arbitrary in \([s_0, s_1]\).

Step 4. For \(s = s_0 \), \((E_{s_0})-(3)\) has at least one solution.

Consider a sequence \((s_m) \) with \(s_m \in [s_0, s_1] \) and \(\lim s_m = s_0 \). By Theorem 5, for each \(s_m \), \((E_{s_m})-(3)\) has a solution \(u_m \). Using the estimates of Step 1, it is clear that \(\| u_m \| < M_1 \), \(\| u'_m \| < M_1 \) independently of \(m \), and, by Remark 1, there is \(\tilde{\rho}_2 > 0 \) large enough such that \(\| u''_m \| < \tilde{\rho}_2 \), independently of \(m \). Then sequences \((u_m) \) and \((u'_m), m \in \mathbb{N}, \) are bounded in \(C([0, 1]) \). By the Arzelà–Ascoli theorem, we can take a subsequence of \((u_m) \) that converges in \(C^2([0, 1]) \) to a solution \(u_0(t) \) of \((E_{s_0})-(3)\).

Hence, there is at least one solution for \(s = s_0 \). \(\Box \)

A variant of Theorem 9 can be obtained replacing \(f \) by \(-f \), \(x \) by \(-x \) and \(y \) by \(-y \).

Theorem 10. Consider \(f : [0, 1] \times \mathbb{R}^3 \to \mathbb{R} \) a continuous function such that the assumptions of Theorem 6 are fulfilled. Suppose that there is \(M > -r \) such that every solution \(u \) of \((E_s)-(3)\), with \(s \geq s_1 \), satisfies
\[
u'(t) > M, \quad \forall t \in [0, 1],
\]
and there exists \(m \in \mathbb{R} \) such that
\[
f(t, x, y, z) \leq mp(t),
\]
for every \((t, x, y, z) \in [0, 1] \times [-r, |M|] \times [-r, M] \times \mathbb{R} \). Then \(s_0 \) provided by Theorem 6 is finite and

1. if \(s > s_0 \), \((E_s)-(3)\) has no solution;
2. if \(s = s_0 \), \((E_s)-(3)\) has at least one solution.

Moreover, if condition (27) holds then

3. for \(s \in [s_1, s_0] \), \((E_s)-(3)\) has at least two solutions.

Example. Consider a particular case of problem (12)–(13) with \(n = m = 1, \; k = 4, \; b = d = B = C = 0, \; a, c > 0 \) and \(p(t) \equiv 1 \), that is
\[
(P) \quad \begin{cases}
\begin{align*}
u''(t) + |\nu''(t)|^\mu - 4(\nu'(t))^3 + (\nu(t))^3 &= s, \\
u(0) &= \nu'(0) = \nu'(1) = 0.
\end{align*}
\end{cases}
\]
with $\mu \in [0, 2]$. The function $f(t, x, y, z) = |z|^\mu - 4y^3 + x^3$ is continuous, verifies the Nagumo-type assumptions in E, given by (14), and monotonicity conditions (15) and (16). Consider s_1 and $r > 0$ large enough such that

$$0 < s_1 < f(t, x, -r, 0) = 4r^3 + x^3$$

holds for every $x \leq -r$. Therefore by Theorem 5 there is $s_0 < s_1$ such that (P) has no solution for $s < s_0$ (if $s_0 = -\infty$, (P) has a solution for every $s < s_1$) and for $s_0 < s < s_1$ problem (P) has at least a solution.

For r_* given by Lemma 2 define the set

$$E_1 = \{(t, x, y, z) \in [0, 1] \times \mathbb{R}^3: |x| \leq 1, |y| \leq 1, |z| \leq r_*\} \subset E.$$

Therefore, following the arguments of the proof of Theorem 4, for $f: E_1 \to \mathbb{R}$ every solution u of (P) verifies $|\mu'(t)| \leq 1$ in $[0, 1]$ and condition (26) holds with $m = -(5 + r_*^\mu)$. Moreover, for $0 \leq \eta \leq 1$ and $\theta \geq 5 + \sqrt{29}/2$, the inequality

$$f(t, x + \eta \theta, y + \theta, z) = (x + \eta \theta)^3 - 4(y + \theta)^3 + |z|^\mu \leq f(t, x, y, z)$$

is verified for $(t, x, y, z) \in [0, 1] \times [-1, 1]^2 \times \mathbb{R}$. So, by Theorem 9, s_0 is finite and for $s_0 < s \leq s_1$ problem (P) has at least two solutions.

References